Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods

نویسندگان

  • Min Lu
  • Saad Sadiq
  • Daniel J. Feaster
چکیده

Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find accurate estimation of individual treatment effects is possible even in complex heterogeneous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, in order to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the effect of forest stand distribution pattern on results of different estimators of the nearest individual distance method

The Nearest Individual Sampling Method is one of the distance sampling methods for estimating density, canopy cover and height of forest stands. Some distance sampling methods have more than one density estimator that may be skewed to the spatial pattern. Unless the stands of the trees under study have a random spatial pattern. Therefore, the purpose of this study was evaluating the effect of s...

متن کامل

Machine Learning Methods for Estimating Heterogeneous Causal Effects

In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies, and for conducting inference about the magnitude of the differences in treatment effects across subsets of the population. In applications, our method provides a data-driven approach to determine which subpopulations have large or small treatment effects and to test hypothe...

متن کامل

Estimation and Inference of Heterogeneous Treatment Effects using Random Forests∗

Many scientific and engineering challenges—ranging from personalized medicine to customized marketing recommendations—require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman’s widely used random forest algorithm. Given a potential outcomes framework with unconfoundedn...

متن کامل

Estimating the continuum of quasars using the articial neural networks

A lot of absorption lines are in the bluewards of Lyα emission line of quasar which is well-known as Lyαforest. Most of absorption lines in this forest belong to the Lyα absorption of the neutral hydrogen in the inter-galactic medium (IGM). For high redshift quasars and in the continuum with low and medium resolution, there are no many regions without absorption, so that, the quasar continuum i...

متن کامل

Prediction of maximum surface settlement caused by earth pressure balance shield tunneling using random forest

Due to urbanization and population increase, need for metro tunnels, has been considerably increased in urban areas. Estimating the surface settlement caused by tunnel excavation is an important task especially where the tunnels are excavated in urban areas or beneath important structures. Many models have been established for this purpose by extracting the relationship between the settlement a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017